Neural Networks for Featureless Named Entity Recognition in Czech

نویسندگان

  • Jana Straková
  • Milan Straka
  • Jan Hajic
چکیده

We present a completely featureless, language agnostic named entity recognition system. Following recent advances in artificial neural network research, the recognizer employs parametric rectified linear units (PReLU), word embeddings and character-level embeddings based on gated linear units (GRU). Without any feature engineering, only with surface forms, lemmas and tags as input, the network achieves excellent results in Czech NER and surpasses the current state of the art of previously published Czech NER systems, which use manually designed rule-based orthographic classification features. Furthermore, the neural network achieves robust results even when only surface forms are available as input. In addition, the proposed neural network can use the manually designed rule-based orthographic classification features and in such combination, it exceeds the current state of the art by a wide margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Named Entity Recognition

Czech named entity recognition (the task of automatic identification and classification of proper names in text, such as names of people, locations and organizations) has become a well-established field since the publication of the Czech Named Entity Corpus (CNEC). This doctoral thesis presents the author’s research of named entity recognition, mainly in the Czech language. It presents work and...

متن کامل

PAYMA: A Tagged Corpus of Persian Named Entities

The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

سیستم شناسایی و طبقه‌بندی موجودیت‌های اسمی در متون زبان فارسی بر پایه شبکه عصبی

Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016